Test 2 / Numerical Mathematics 1 / May 25th 2020, University of Groningen
A simple calculator is allowed.
No additional material is allowed.
All answers need to be justified using mathematical arguments.
Total time: 1 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) +10 minutes (if special needs)
Remember: oral "checks" may be run afterwards.
Grade $=($ obtained points $)+1$
Exercise 1 (6 points)
Consider the function $f(x)=x^{2}-x-1$.
(a) 1.0 Show that if x^{*} satisfies $f\left(x^{*}\right)=0$, then for $g(x)=1+1 / x, x^{*}$ satisfies $g\left(x^{*}\right)=x^{*}$. Propose, without using any derivative of $f(x)$, another function $h(x) \neq g(x)$ and $h(x) \neq$ $1 /(x-1)$ verifying $h\left(x^{*}\right)=x^{*}$.
(b) 1.0 Compute 3 fixed point iterations using $g(x)$ starting from $x^{(0)}=-N-2$, with N the last digit of your student number.
(c) 2.0 Show that $g(x)$ is a contraction in a domain containing one of the two roots of $f(x)$. Determine precisely that domain.
(d) 2.0 Prove that the sequence $x^{(k+1)}=g\left(x^{(k)}\right)$ converges to one of the roots of $f(x)$ for any starting value $x^{(0)} \neq 0 \in \mathbb{R}$.

Exercise 2 (3 points)

We want to solve the linear system $A x=b$ for $x \in \mathbb{R}^{2}$ by using stationary Richardson iterations:

$$
x^{(k)}=x^{(k-1)}+\alpha\left(b-A x^{(k-1)}\right)
$$

using as initial guess the vector $x^{(0)}=[1,0]^{\top}, b=[0,1]^{\top}$. The matrix A is given by:

$$
A=\left[\begin{array}{cc}
a & -c \\
-c & a
\end{array}\right], a>c>0 .
$$

(a) 0.5 Compute $x^{(1)}$ from $x^{(0)}$ in terms of α, a, c.
(b) 1.5 Give a value of α in terms of a and/or c so that convergence of the Richardson iterations towards $A^{-1} b$ is ensured. Justify your answers in view of the theory.
(c) 1.0 The exact solution of the linear system is given by $x^{*}=\left[x_{1}^{*}, x_{2}^{*}\right]^{\top}$. Find the value of α such that $\left\|x^{(1)}-x^{*}\right\|_{2}^{2}$ is minimal. Answer this question by using only the information given and results obtained in this test.

