Test 2 / Numerical Mathematics 1 / May 25th 2020, University of Groningen

A simple calculator is allowed.

No additional material is allowed.

All answers need to be justified using mathematical arguments.

Total time: 1 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) + 10 minutes (if special needs)

Remember: oral "checks" may be run afterwards.

Grade = (obtained points) + 1

Exercise 1 (6 points)

Consider the function $f(x) = x^2 - x - 1$.

- (a) 1.0 Show that if x^* satisfies $f(x^*) = 0$, then for g(x) = 1 + 1/x, x^* satisfies $g(x^*) = x^*$. Propose, without using any derivative of f(x), another function $h(x) \neq g(x)$ and $h(x) \neq 1/(x-1)$ verifying $h(x^*) = x^*$.
- (b) 1.0 Compute 3 fixed point iterations using g(x) starting from $x^{(0)} = -N 2$, with N the last digit of your student number.
- (c) 2.0 Show that g(x) is a contraction in a domain containing one of the two roots of f(x). Determine precisely that domain.
- (d) 2.0 Prove that the sequence $x^{(k+1)} = g(x^{(k)})$ converges to one of the roots of f(x) for any starting value $x^{(0)} \neq 0 \in \mathbb{R}$.

Exercise 2 (3 points)

We want to solve the linear system Ax = b for $x \in \mathbb{R}^2$ by using stationary Richardson iterations:

$$x^{(k)} = x^{(k-1)} + \alpha \left(b - A x^{(k-1)} \right)$$

using as initial guess the vector $x^{(0)} = [1, 0]^{\intercal}$, $b = [0, 1]^{\intercal}$. The matrix A is given by:

$$A = \begin{bmatrix} a & -c \\ -c & a \end{bmatrix} \ , \ a > c > 0.$$

- (a) 0.5 Compute $x^{(1)}$ from $x^{(0)}$ in terms of α, a, c .
- (b) 1.5 Give a value of α in terms of a and/or c so that convergence of the Richardson iterations towards $A^{-1}b$ is ensured. Justify your answers in view of the theory.
- (c) 1.0 The exact solution of the linear system is given by $x^* = [x_1^*, x_2^*]^{\mathsf{T}}$. Find the value of α such that $||x^{(1)} x^*||_2^2$ is minimal. Answer this question by using only the information given and results obtained in this test.